John C. Paolillo
Language, the Internet and access: do we recognize all the issues?

1. Introduction

The Internet is so ubiquitous and global that it is now widely regarded as a significant
site of contact among people of all linguistic and cultural backgrounds. Representatives
of language groups from the smallest to the largest see Internet access as a major policy
objective, as do governments and policy makers worldwide. Policy discussions and aca-
demic research tend to focus questions of representation and dominance at either the
global or local level, systematically neglecting a range of related social and technical is-
sues such as the central role of written language, the linguistically non-neutral imple-
mentation of technical protocols, programming and markup languages and the social
infrastructure governing the technical aspects of the Internet. When these are taken into
account, it becomes clear that the current Internet promotes an emerging global diglos-
sia, in which exclusively English is used for technical purposes, and all other languages
are merely “content”, without full range of use. Recognition of this issue points toward
a need to emphasize truly language-neutral technologies for the Internet.

Public awareness of Internet language issues has focused on the “use of languages on
the Internet”. This notion is often not fully explicated, but three principal concerns are
discussed more frequently than others: (1) the ability to produce web pages in whatever
language is at issue (typically for language preservation), (2) the ability to use different
languages to name Internet hosts and (3) the various adaptations of users to technical
systems that were not designed for their own languages. The first of these is addressed
through the Unicode effort and the World Wide Web recommendations process. The sec-
ond of these dominated the agenda of the United Nations World Summit on the Informa-
tion Society (held in Geneva 2003 and in Tunis 2005), resulting in the establishment of the
Internet Governance Forum (IGF), and the modification of the Domain Name System,
regulated by the US non-profit corporation ICANN, to allow International Domain names.
The third is the subject of intense research among academics around the world, resulting
in collections such as Danet/Herring (2007), Androutsopoulos (2006) and Wright (2004),
among many other individual publications. However, the technical situation behind the
first two issues remains disconnected from the academic research on Internet language
use, and does not get the full examination it deserves, given its importance to the status
of languages on the Internet.

In this plenary, I argue that the technical issues of language use on the Internet require a
closer look. We examine three core Internet technologies: the representation of text in
Unicode, the naming of Internet hosts in the Domain Name System, and the programming
and markup of websites using HTML and web scripting languages. All three are shown to
have a bias toward English, with other languages experiencing greater costs that could
otherwise be technically unnecessary. This situation is interpreted in terms of the ethics of
computer system design, and the sociolinguistic phenomenon of diglossia, to illuminate
the ways in which technical design choices reflect extrinsic social values. We conclude
with a discussion of principles for the remediation of technical language bias.

62 John C. Paolillo

2. Use of text

The Internet is primarily a text-based environment, so the use of the Internet for com-
munication presupposes and the ability to represent written language text is a basic re-
quirement. In fact, information technology is heavily dependent on text in general, and
so it follows that languages without written representations, or in particular, languages
without “machine readable” written form, are at a disadvantage in their ability to use IT.

The principal effort to address this issue is the Unicode project, led by a consortium of
technology companies (eight full members), government agencies (four, primarily South
Asian), supporting and associate members (24) and individual members (102). The Uni-
code project began in the late 1980s as an effort to reconcile what were then vendor-
specific, incompatible ways of representing non-English text (Becker 1988). The con-
sortium officially incorporated in 1991, and by 1993 the Unicode standard was formally
merged with ISO-10646 (a formerly competing encoding for text); it is currently in ver-
sion 6 (Unicode 2011).

Unicode recognizes three problems relating to the representation of multilingual text:
the problem of encoding and processing written language in machine-readable form, the
problem of rendering machine-readable text in human-readable form, and the problem
of inputting text into a computer by people. Unicode only addresses the encoding issue,
and does not specify the rendering or input methods that should be used, permitting ven-
dors (e.g. Unicode's commercial software company members) to compete to fill these
needs. This delimitation of scope has delayed full Unicode implementation for many
languages, especially those using non-Latin orthographies.

Unicode's solution to the encoding problem was to develop a universal encoding (hence
“Unicode”) for all written languages by assigning each distinct textual character in each
writing system a unique binary number, or code-point. The notion of character in Uni-
code is an abstraction lacking a universally fixed definition.! It is implemented differ-
ently for different writing systems, e.g. Latin letters with diacritics are typically different
characters, as are circle-enclosed Latin letters, but Han (Chinese) characters in Chinese,
Japanese and Korean are expected to be unified across all three languages, even where
these characters have divergent written shapes (and no circle-enclosed versions are recog-
nized). Code points are fixed and finite in number. Unicode is limited to 1,114,112 unique
code-points, so no more than this number of characters can ultimately be recognized with-
out significant revision; 109,499 code points are actually defined at present.

Unicode code points are broken up by numerical range into planes (of which there are 17)
and blocks (units of up to 256 characters). Each plane has a maximum of 65,536 code
points. The lowest-numbered plane (zero) is known as the Basic Multilingual Plane (BMP).

U “Abstract character: A unit of information used for the organization, control, or representation of tex-
tual data. When representing data, the nature of that data is generally symbolic as opposed to some
other kind of data (for example, aural or visual). Examples of such symbolic data include letters, ideo-
graphs, digits, punctuation, technical symbols, and dingbats. An abstract character has no concrete
form and should not be confused with a glyph. An abstract character does not necessarily correspond
to what a user thinks of as a ‘character’ and should not be confused with a grapheme [...].” (Unicode
2011, 66).

Language, the Internet and access. do we recognize all the issues? 63

Outside of the BMP, the currently defined planes are the Supplementary Multilingual Plane
(for historical scripts and musical and mathematical symbols), the Supplementary Ideo-
graphic Plane (for additional Chinese, Japanese and Korean ideographic symbols), the
Tertiary Ildeographic Plane (reserved for additional ideographs) and the Special Use Plane
(for application-specific purposes). The remaining 13 planes are not presently assigned,
but reserved for future use.

The allocation of the BMP, by script and block, is illustrated in Figure 1. The largest share
of the BMP is taken up by East Asian Languages: there are 111 blocks used for “unified
CJK”, which is the Chinese character set common to Chinese, Japanese and Korean.
Identifying this set was a major preoccupation of Unicode in the 1990s. In addition to
this, there are 55 blocks for Southeast Asian languages, 11 for South Asian scripts, 10 for
Latin, 4 for Cyrillic, and one for Greek and Coptic. Other assignments are made for
African, American, Middle Eastern and linguistic scripts.

The lowest block of the BMP contains the most commonly used Latin characters; this
single block is generally sufficient for Western European languages, being the same as
the 1989 specification ISO-8859-1 (Latin-1). The map of the character assignments in
this block is given in Table 1. This block consists of assignments for upper and lower
case Latin characters, including vowels with diacritical marks, special symbols common
in Euro-American print usage, and 52 “control codes”, most of which are presently un-
used, but are retained for compatibility with older encodings. The lower half of Block 0
is identical to a 1963 standard known as US-ASCII or simply ASCII, the most commonly
used character set prior to Unicode; ASCII is only adequate for representing US English.

EZ mm..'s m oF I Latin scripts and symbols
. .' 14 15 la 18 CI 1|1 Linguistic scripts
..-.........’ B Other European scripts
I I 5+ 35 36 57 38 39 3A 38 3C 30 3E 3F
Middle Eastern and
................ Southwest Asian scripts
................ Central Asian scripts
68161 62|(63) |64 [65] 65 [67 68 69 6 (6B ec|Gp| 6E [6F| Z

Southeast Asian scripts

East Asian scripts

Unified CJK Han

Symbols

1 s S Y o I
B0 BL B2 B3 B4 BS B B7 BS B9 BA BB BC BD BE BF '
€O C1C2 €3 C4 C5 C6 C7 C8 C3 CA CB CC (D CECF wm -

-....... Bﬁ Dg DA DB uc DD DE DF Miscellaneous characters

g6 |E1 [e2|[E3][e4 E5||Es E7|IEe) B9 [EAllEB] [EC |ED] [EE [EF Unallocated code points

Fo F1 F2 F3 F4 Fs re F7 re F9 [Fa) [EGHEEI G

Figure 1: The Basic Multilingual Plane of Unicode
(public domain image: http://en.wikipedia.org/wiki/File:Roadmap_to_Unicode_BMP.svg)

Diacritics

64 John C. Paolillo

One might be tempted to argue from the existing Unicode character assignments that
most of the existing Unicode standard is devoted to the needs of Chinese, Japanese and
Korean, and it therefore exhibits a bias toward those languages. This would be a super-
ficial view, however, because the actual bias depends on other technical aspects of Uni-
code's use. Unicode has been designed to preserve a continuity of standards from ASCII
to ISO-8859 to the present Unicode, thereby privileging the encoding of US English. In
terms of code-point assignments, this advantage is small, but has broader ramifications.

Unicode offers three options for representing text: UTF-32, a 32-bit fixed-width encod-
ing, UTF-16, a 16 bit variable-width encoding, and UTF-8, an eight-bit variable-width
encoding. Fixed width encodings require the same amount of space for each character,
regardless of its location in the Unicode system. Variable-width encodings allow some
characters to be encoded in less space, while others take up more. In UTF-8, the most
common Unicode text encoding, characters of 7-bit ASCII are encoded using the value
of the code-point in a single eight-bit byte, whereas other Unicode characters (including
Latin with diacritical markings) are encoded using 2, 3 or 4 bytes. For efficiency, vari-
able-width encodings should encode more frequently used characters in shorter sequences;
for UTF-8 it appears that the design assumption was that Unicode would be most com-
monly used for US-English. The advantage cited, however, is that any pre-existing ASCII
text remains valid in Unicode, without modification.

[SO-8859-1 (Basic Latin)
US-ASCII
0 16 | 32 | 48 | 64 | 80 | 96 | 112|128 | 144 | 160 | 176 | 192 | 208 | 224 | 240
0 |NUL|DLE|SPC| 0 | @ | P xxx [Dcs [NBSP| o | A [D | a | &
1 | soH | Dc1| | 1|1A|Q] a XXX | PUL | + | A|N]| a&a| a
2 | stx|pcz | 2 BIRI|Db BPH | PUZ | ¢ 2 Al O P O
3 |ETX D3| # | 3 | C| S| c | s |MH|sts| g |3 A]0|alséo
4 |BOT|DC4| ¢ | 4 | D | T |d | t |™D|cn| g Al O0O]|alo
5 |ENQ|NAK | 05 | 5 | E | U | e |u [N Mw| ¥ | v | A| 0] &6
6 |ACK|SWN | & | 6 | F |V | f | v [SSAa]sA] T|&£]|0]a2]|0
7 | BEL | ETB | 7| G|W]| g |w|EBa|Ea| g Cl x| ¢+
8 | BS|caN| (| 8 | H| X | h | x [Hrs|sos| - E|@d|¢& |0
9 | HT | EM |) | 9 I |Y|i|y|WOW|xx @|* | E|U|é]|nn
10 | LF | suB | =] 7 j z | vis | sa | a 0 E U & u
1| veescl 4+ | - K| [| k| {|PP|est]| «]|» | E|]O0]|e&]|nq
12 | FF | Fs | < | L |\ 1 | [P ST | = || 1|01 u
13 | R | 68 | _ = | M|] m | } RI | OSC | SHY | 15 | f \' i y
14 | so | RS | | > N|[*|n|~|[s2|PM | @®|3%|T|PpP|1T]|FPp
15 | SL | Us | / ? 0 _ o | DEL | ss3 | APC | - i I R i y

Table 1: Character Assignments in Block 00 of Unicode

Language, the Internet and access. do we recognize all the issues? 65

The significance of this design choice, while greater than that of numeric code-point as-
signments, might still appear small. For most European languages using Latin charac-
ters, the extra difficulty of encoding diacritics is small, and it does not affect the core
fifty-two Latin characters shared with English. The encoding would be no more com-
plex if diacritics were encoded as separate characters. For scripts such as Arabic script,
Cyrillic or Greek, the situation is different, affecting each and every character in a text.
Texts in such scripts require approximately twice as much space to store and incur twice
as much transmission cost as comparable texts in Latin.

An even greater cost to international text is the same one that Unicode sought to pre-
serve for English: any previously encoded text for something other than US-ASCII is
simply not valid Unicode. This includes ISO-8859-1, and the many (non-standard) eight-
bit encodings of Arabic and Cyrillic, alongside others (e.g. East Asian and South Asian
encodings). This, alongside the many years' lag in support for input and rendering of the
same scripts, imposes significant legacy-text conversion costs on non-English and non-
Latin script use (Hardie 2007; McEnery/Xiao 2005).

3. ASCII and the Internet: domain names

Another major area of contention over the use of languages online has been in the nam-
ing of Internet hosts. Internet host names are maintained by the Domain Name Service
(DNS), a system conceptualized in 1981 to replace the original file-based directory
scheme known as HOSTS.TXT (Rader 2001). The DNS was conceived as a way to main-
tain a global, distributed directory system within a delegated model of hierarchical con-
trol. As a global system, it was intended to index every host on the Internet; as a distrib-
uted system, it was intended to permit the index to be updated in a responsive and timely
fashion, to avoid the cumbersome centralized management that had been a problem
with HOSTS.TXT.

The DNS was established in 1985 under a US Department of Defense contract for the
ARPANET, the precursor to the Internet. DNS authority was essentially delegated by
sub-contracts under the Department of Defense and the National Science Foundation
from 1985 to 1997; in 1995, Network Solutions Inc. (NSI) operated the DNS and began
charging fees for host registration. Because of this commercialization and the monopoly
control of whoever was to run the DNS, DNS authority was heavily contested until 1998,
when a new legal structure was forged, and the US Department of Commerce forced the
transfer of DNS authority from NSI to a new body, the Internet Corporation for Assigned
Names and Numbers (ICANN), which runs the DNS and other aspects of the Internet to
this day (Rader 2005).

On a technical level, the DNS is a set of protocols for the resolution of host names, which
serve as human-readable mnemonics for computers on the Internet. Nothing in the Inter-
net protocols requires that a host be named this way; an Internet host need only have an
Internet Protocol number (or IP number, a 32 bit number that serves as a computer's ad-
dress, also administered by ICANN). The sole technical role of the DNS is to translate
conveniently remembered mnemonics into IP numbers, which can be done (arbitrarily)
by any Internet host designed to use the DNS protocols. On a political level, the design-

66 John C. Paolillo

ers of the DNS intended that there be only one such service, centrally managed and con-
trolled.? Because of this, the DNS and the naming of Internet hosts have enormous com-
mercial and political significance, involving the legal use of commercial trademarks,
freedom of political speech and minority rights.

Under the DNS protocols established in 1985, hostnames are limited to a strict subset of
seven-bit ASCII characters: the 26 lower case Latin letters a to z (with no diacritics), the
digits 0 through 9, and hyphen. Clearly, this technical limitation favours US English at
the expense of all other languages; the lack of Latin characters with diacritics being a
long-standing rub (Pargman/Palme 2009). From the time that ICANN assumed control
over the DNS, international pressure over this issue from governments and community
groups intensified, leading to the key concession at the UN World Summit on the Infor-
mation Society (WSIS) 2003 and 2005, where ICANN agreed to establish the Internet
Governance Forum (IGF). An outcome of the WSIS and IGF processes was the imple-
mentation of Punycode, a seven-bit encoding of Unicode suitable for use on the DNS. The
intent of Punycode was to permit the use of Unicode for the naming of Internet hosts, to
respond to the need for “internationalized domain names” (IDNs); in 2009, a process for
registration of top-level internationalized domain names was initiated by ICANN.

As it relies on Unicode, the Punycode implementation of IDNs has all of the same prob-
lems as text encoding in Unicode, but actually in an even more severe form, as Puny-
code is limited to bytes corresponding to the subset of ASCII already used by the DNS.
Thus, Punycode is a variable width encoding in which the lower case characters of ASCII
are unchanged, and other characters require two more bytes to encode. For example, the
Greek word mapdaderypa becomes hxajbheg2az3al in Punycode, and the domain name
mapaderypa.gr becomes xn--hxajbheg2az3al.gr. The result of a Punycode encoding is thus,
not in general human-readable without considerable application support.

Figure 2 is an attempt to indicate how this might affect different languages for which in-
formation is available; the pages for “What is Unicode” in each of the available script
encodings as of November 2007 were converted to Punycode word-by word, and heat-
map histograms were plotted. Each column in Figure 2 represents a distinct language/
script, with brighter areas indicating higher frequency. Hence we can see that English
has fairly short typical word lengths (under ten ASCII characters), whereas Albanian, Finn-
i1sh, French, Slovenian and Turkish all have words of more than 20 ASCII characters in
length (indicated by the horizontal white line). Hence the number of characters required
to encode a typical hostname in these languages can be expected to be greater.

These requirements do more than make hostnames longer in non-English scripts; they
also impose upper limits on what a valid hostname can be that are sharply lower for non-
English languages than for English. The DNS requires that hostnames consist of dot-sepa-
rated fields, that the fields not be longer than 63 ASCII characters, and the total length of
the name not be longer than 255 ASCII characters, including all field-delimiting dots and

2 Users, institutions and ISPs can configure their computers to use an alternative “DNS root” from that
overseen by ICANN. Many alternate roots do exist, and some were instrumental in increasing pressure
on ICANN for internationalizing domain names. ICANN, however, has considerable financial incen-
tive to downplay the significance of alternate roots, to avoid what it calls “fragmenting the Internet”
(Kahn 2006).

Language, the Internet and access. do we recognize all the issues? 67

top-level domain (e.g. .com, .net, country code domain such as .ft, or internationalized top-
level domain, such as .p¢ [Russian Federation]). As a consequence, some desired do-
main names are likely to be impossible to register. A three-word name in a language where
typical words encode as 20 or more ASCII characters would raise this problem, whereas
English does not encounter it until six-word combinations are used for fields. Once a large
number of single-word names are registered, as happened quite quickly with English,
longer names are required; IDNs are likely to experience this as well, and the ICANN will
eventually have to face an IDN issue from these field and hostname length limits. Since
these limits come from obsolete data types,’ it is not clear why ICANN has worked so
hard to keep them in place.

40

30

20

10

Q < a _ e < Q Q [} 0 = Q = = < = <
e 2T EEECE S ECEE 2 S5 5E3835E8358223EDEEREEED
S EEEER SN SR EERER R E P SEEE S 4 E R ESEEDEeEDE
=) en o o .= o == o S = = en 5 O
S E<a PEYORTEERSLET 3 EMESRZERCSEHEC £ EFEZEDE

=z G 35 3 S8 = 121 S 7R = g = 5]
m m o & = = 5 o~ N 2 = g X

235 = = g 2

G} = 25 E]

=] =

o0

>

)

Figure 2: Typical Punycode word lengths in the text “What is Unicode” for 45 language-script
combinations

The DNS is hardly alone among Internet protocols in uniquely privileging ASCII. Most
other technical protocols do the same. The WHOIS protocol, which provides public ac-
cess to the assignment of IP numbers, and basic directory services identifying parties
legally and technically responsible for each Internet host, is entirely based upon ASCII
(Daigle 2004). SMTP, the data-exchange system at the heart of all email, has been ex-
tended to permit messages to have content from any character set, but headers and other
information used directly by SMTP remain in ASCII (Klensin 2001). Even the HTTP
protocol underlying the World-Wide Web requires command, error and header informa-
tion to be transmitted in ASCII or ISO-8859-1 (Berners-Lee et al. 1996). Others could be
mentioned as well. What is remarkable about ICANN's management of the DNS is the
slow pace of its adaptation in the face of intense public demand and mounting interna-
tional pressure (Mayer-Schonberger/Ziewitz 2006). Should the remaining protocols ever
become internationalized, we can expect similar difficulties with them as well.

> The 255-character limit suggests a Pascal data type originally defined in 1971.

68 John C. Paolillo

4. Web markup and programming

Another major role of language is found in the markup and programming of web sites,
as contrasted with the development of content; markup refers to the HTML, XML, RDF
and other markup vocabularies that are used to format web page content, and to indi-
cate something about its semantics for whatever applications use it. While the content
may be in whatever language is desired for the target audience, markup must be in the
formally specified vocabularies used for markup. Similarly, web programming is the
writing of processing algorithms to be used either by the server, before data is deliv-
ered to the client, or by the client program, to dynamically control the presentation of
data to the user. Web programming is accomplished in formally specified scripting
languages.

Purpose Name Data Identifiers Keywords
General data definition XML Unicode Unicode Unicode
Formatting text HTML Unicode Unicode ASCII
Markup definition for XML XML-DTD Unicode ASCII ASCII
XML Schema Unicode Unicode ASCII
Transformation of XML to other XSLT Unicode Unicode ASCII
formats
Server-side programming Python Unicode Unicode ASCII
Ruby Mainly ASCIT ASCII ASCII
Perl Mainly ASCII ASCII ASCII
PHP Mainly ASCII ASCII ASCII
Client-side (browser) programming JavaScript Unicode ASCII ASCII
ECMAScript Unicode ASCII ASCII
Database query language SQL Mainly ASCII ASCII ASCII

Table 2: Support for Unicode in web markup and programming languages

Because of the Unicode effort, the international spread of the Internet and the develop-
ment of web standards under the Worldwide Web Consortium (W3C), Unicode support
is now seen as a requirement for most programming languages. Currently, the web markup
languages HTML and XML support Unicode. All of the major web scripting languages,
whether on the server side like Perl, PHP, Python, Ruby, and others, or on the client side,
like JavaScript and ECMAScript, now support Unicode, although this means different
things for different markup or programming languages.

Table 2 lists some common markup and programming languages, describes their func-
tionality, and indicates the level of their support for Unicode. The “Data” column indi-
cates the encoding permitted as data for each language; “Identifiers” indicates the en-
coding permitted for function, variable or other identifier names; “Keywords” indicated
the encodings permitted (required) for special keywords defined in the language. From
Table 2 we can see that only XML is defined to permit Unicode in all three. However,

Language, the Internet and access. do we recognize all the issues? 69

this appearance is a little deceptive, because XML is used to represent data; the XML
data formats themselves are defined in either XML-DTD or XML Schema, using ASCII
keywords. Among the server programming languages, full support for Unicode data is
rare; when it exists it is generally enabled by extensions, and secondary to ASCII or other
8-bit encodings. All the languages use ASCII keywords; it is worth examining these in
more detail.

The Appendix lists keywords for several markup and programming languages: the
data-formatting languages HTML and XML-DTD, the server scripting languages Python,
Ruby and PHP, and the compiled languages Fortran, C and C++. These keywords repre-
sent computational features in each language; 1.e. they are that part of the code, apart
from mathematical operators etc., which is actually interpreted in terms of computer
instructions, and has computational semantics. While the keywords vary by language,
what is remarkable is that all of these keywords come from English words, phrases or
abbreviations.

#!/usr/local/bin/cpython
answer = raw_input('Do you think the Chinese language has value? (Yes / no)')
(A5 = BACIUR F X FEZCE S H A NMEB ? () 7%75)")
if answer == 'yes':
20 [/ ==
print 'Well, let's work together!’
GG W FA] E
elif answer == 'no":
PR] == R
print 'Well, not as a programming language’
GRFIE AT IR TR FE iR S AIME
else:
e
print 'Please give serious consideration before answering.’

G IEUREE e

Figure 3: A Chinese Python program. The comment lines in English gloss the function of the Chinese-
language code (www.chinesepython.org)

The English-lexified nature of computer programming is so entirely deep-seated that it
is often treated by computer scientists and professionals as unremarkable. The number
of computer programming languages is thought to exceed the number of human lan-
guages,* but it is English which is the overwhelmingly the parent language of the codes
actually used to program computers. Yukihiro Matsumoto, the Japanese author of Ruby,
chose to use English keywords for his creation. A few projects exist to “translate” pro-
gramming languages into Chinese and other languages, but the remark most often made
about them, including by their authors, is that they are strange, as can be seen from
Figure 3. Such projects seldom gain traction; the Chinese Python project, for example,
appears to have been abandoned. Native-language programming is a cause sometimes
taken up for educational purposes, but it is generally assumed to have no other practical
significance.

4 The HOPL website (http://hopl.murdoch.edu.au/) currently catalogs 8,512 programming languages, whe-
reas the Ethnologue (http://www.ethnologue.com/) lists 6,909 living human languages.

70 John C. Paolillo

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;charset=utf-8" />
<base href="http://www.efnil.org/mission-1" /><!--[if 1t IE 7]></base><![endif]-->
<meta name="generator" content="Plone - http://plone.org" />
<link rel="kss-base-url" href="http://www.efnil.org/mission-1" />
<script type="text/javascript"”
sre="http://www.efnil.org/portal_ javascripts/SubsSkins/event-registration-cachekey3888.js">
</script>
<script type="text/javascript"”
sre="http://www.efnil.org/portal_ javascripts/SubSkins/fckeditor-cachekey6635.3s">

</script>

<style type="text/css"><!-- @import url(http://www.efnil.org/portal css/SubSkins/base-cachekey5313.css); --></style>

<style type="text/css" media="screen"><!-- @import url(http://www.efnil.org/portal css/subSkins/projectprogressstyle-cachekey0528.css); -
-></style>

<link rel="kinetic-stylesheet" type="text/css"
href="http://www.efnil.org/portal_kss/sSubSkins/at-cachekey0389.kss" />
<link rel="kinetic-stylesheet" type="text/css"
href="http://www.efnil.org/portal kss/SubSkins/resourcecnfnotification-cachekey9316.kss" />
<title>Mission — European Federation of National Institutions for Language</title>
<!-- Internet Explorer CSS Fixes -->
<1-—[if IE]>
<style type="text/css" media="all">@import url (http://www.efnil.org/IEFixes.css);</style>
<![endif]-->
<link rel="author"
href="http://www.efnil.org/author/varadi"
title="Author information™ />
<link rel="shortcut icon" type="image/x-icon"
href="http://www.efnil.org/favicon.ico" />
<link rel="home" href="http://www.efnil.org"
title="Front page" />
<link rel="contents" href="http://www.efnil.org/sitemap"”
title="Site Map" />
<link rel="search"
href="http://www.efnil.org/search form"
title="Search this site" />

<!-- Disable IE6 image toolbar -->
<meta http-equiv="imagetoolbar" content="no" />
</head>

<body class="section-mission-1 template-document view"
dir="ltr">
<div id="visual-portal-wrapper">
<div id="portal-top">
<div id="portal-header">

Figure 4: A fragment of the HTML in the home page of the EFNIL website (www.efnil.org)

Whatever its presumed status, the net effect of the English lexis is that the majority of
the human-readable information associated with a web page tends to be English-based,
requiring a technical English education to use, modify and otherwise appreciate. This is
evident in EFNIL's own website: each page of the site, whatever the content language, is
bracketed by about eight pages of HTML code like that in Figure 4 (alongside another
five pages of JavaScript). This is true in spite of the fact that the Python-based Plone
content management software system used by the EFNIL website was probably chosen
for its superior Unicode support.

5. Diglossia in computer systems

In sociolinguistic terms, the situation with programming and markup on the web is a
diglossia (Ferguson 1959): a situation in which two or more language varieties are used
side-by-side for different functions. On the Internet, the “High” variety (English, in this
case) is the exclusive code of all technical functions, while the “Low” varieties (all other
languages) are used only as content, 1.e., for everyday communication. This diglossia is
global in scope, but concerns a specific set of technical functions in which English alone
is used.

This situation is not a necessary part of computer programming. Keywords for program-
ming and markup are actually stand-ins for abstract operations implemented by the com-
puter, and any other replacements would work just as well. The abstract operations are
no more naturally expressed in English than in any language: English programming key-
words are often used in meanings only remotely related to their English meanings (e.g.,
“for” and “while” do not function as temporal prepositions, but indicate a computation

Language, the Internet and access. do we recognize all the issues? 71

performed some number of times). The Unicode project maintains the Common Locale
Data Repository (CLDR), which consists of lists of internationalized keywords for other
domains: dates, language names, currencies, measurement systems, territories, time zones,
etc.; a unified list of programming and markup terms would not be very long, compared
to the number of language names, for example (the longest keyword list in the Appendix
1s HTML, with 211 terms). Moreover, many programming languages, such as C++, al-
ready use preprocessors that perform replacements similar to what is required for lan-
guage localization. Technical extensions of this nature may not be trivial, but they are
also not onerously difficult.

Nor is this situation a simple consequence of voluminous literature — e.g., technical
documentation — in English. Such technical documentation can readily be found in many
other languages; technical documentation is often localized when technologies are ad-
opted (e.g., projects for localizing Linux, which mostly means translating documenta-
tion), but computer code almost never is. Moreover, English is not just the preferred
language for programming; it is also the favoured language of scientific research and
many international functions. Other linguists have noted the same English diglossia in
other domains (Crystal 1997; Graddol 1999; Phillipson 2003), further connecting it to
linguistic bias (Phillipson 1992, 27, 104).

This situation is, rather, an outcome of the historical development of computer and In-
ternet technology in the post World War II era. The shift of the centre of scientific and
engineering innovation from Europe to the US occurred at a time when computing tech-
nology was still largely nascent. Many innovations in computing were led by US-based
industrial, military and academic research efforts; meanwhile the developing telecom-
munications infrastructure, on which computing has long depended, became cantered in
the US. The rapid adoption of computing and Internet technology in the 1980s and 1990s
took place in a context in which US-English was already favoured by a number of other
factors. In spite of the significant contributions of many European scientists to com-
puting (Bauer 2002; Tomayko 2002) and even Internet protocols, the commoditization
of computers and their coupling to the telecommunications network largely benefitted
US English.

Friedman/Nissenbaum (1996) examined bias in computer systems, and developed a set
of categories for describing biases and identifying appropriate remedies. They recognize
three kinds of bias: Pre-existing, technical and emergent bias. Pre-existing bias arises from
circumstances outside the technical system, via attitudes toward, conflict with or oppres-
sion of groups of people; such circumstances tend to be institutionalized in the social sys-
tem or culture. Technical biases exist when the technical systems themselves have some
built-in bias. Emergent biases arise through the interaction of a technical system with the
people using it in some particular context. Many times, emergent biases are the conse-
quence of taking a technical system out of its original context and deploying it elsewhere.
Evaluations that were not intended in the design of the technical system become part of
its use in the new context, resulting in bias.

Different types of bias require different types of remedies. Pre-existing biases can only
be addressed through social changes and are usually not the direct responsibility of com-
puter system designers. Technical biases are part of the technologies themselves, and

72 John C. Paolillo

therefore require technical changes, and addressing them is the responsibility of design-
ers. Emergent biases involve properties of both the technology and the society in which
it is used; they are sometimes the responsibility of designers, but they often involve in-
teractions that can be difficult to anticipate.

As we have seen, there is a clear technical bias toward English in the core Internet tech-
nologies. Yet Internet technologies, such as the DNS and ASCII text encoding, were ad-
opted from an US-English context (the ARPANET) by countries where English is not
generally spoken; this suggests that an emergent bias. The development of Unicode and
other technologies are technical efforts to address this emergent bias. At the same time,
pre-existing bias is present in the attitudes of members of the technical professions,
whether they be those emphasize backward-compatibility with ASCII at the expense of
other encodings, or those that treat English as the only suitable medium for technical as-
pects of computing.

The English bias of the Internet is thus deeply inscribed in the Internet technologies them-
selves, but more than a mere technical bias; it has complex causes, and simple remedies
are unlikely to successfully address it. At the same time, it should be clear that an impor-
tant locus of these biases is in the community of engineers developing computing and In-
ternet technologies. The organization operating the DNS (delaying the implementation of
IDNs for fifteen years) and the technology consortia creating Unicode (deciding that
only ASCII would be a directly supported legacy encoding) and HTML (originally from
CERN in Geneva, Switzerland) all belong to the same international community of re-
searchers, academics and technologists; they hold meetings to discuss these technolo-
gies in North America, Europe, Asia and elsewhere, and citizens of EU member coun-
tries are prominently represented among the participants. For both technical and social
reasons, a program to address linguistic bias in Internet technologies should begin with
these people.

6. Designing a program for change

The need to address the issue of English bias and diglossia in the Internet technologies
should be evident. Diglossias are rarely stable, and tend to develop toward one of two
outcomes: inter-generational language shift to the High code (English) or replacement of
the High code by the Low code in High functions (i.e., the use of non-English languages
for programming computers). The first outcome is favoured when individuals perceive
greater rewards, economic or otherwise, in using the High variety. But to the extent that
the European Union values its language diversity, the second outcome is the more desir-
able one. Since the technologies of the Internet impose high costs for non-English lan-
guages, maintaining Internet infrastructure, web sites, and language-localized informa-
tion resources costs more in countries where English proficiency is less prevalent.

A program to address the US-English bias needs to recognize certain principles. First, it
must acknowledge the importance of written language on the Internet. Much has been
made of the prospect for voice, video and translation applications to assist Internet users
in connecting across language barriers. However, any assessment of these technologies
must be guarded. The dream of machine translation is as old as the origins of modern

Language, the Internet and access. do we recognize all the issues? 73

computing in World War II military code breaking, but despite many rosy predictions
and heavy research expenditures over the years, its promises remain unfulfilled. Video
cannot be expected to do much better than television and film have already done in cross-
ing language barriers; these technologies are much better at delivering powerful cultures
to large audiences than they are at promoting the interests of minorities. As for voice, as
long as the gateway technologies are programmed and configured via written text, voice
telephony will only be an application.

Second, as suggested immediately above, the accessory role of specific enabling tech-
nologies needs to be recognized. The text-encoding problem targeted by Unicode is such
a technology, as is the DNS, WHOIS and many others. These technologies should have
high priority for internationalization, as that is the only real guarantee of access to the
technologies. In some cases, as Unicode, and the IDNs of the DNS, internationalization
1s well underway, although its exact form may not be all that is desired. Others, like com-
puter programming, need urgent attention. It will not be possible for international citi-
zens to innovate Internet technologies in their own languages without learning computer
programming. Since the web programming and markup languages are an important
entry-point for computer programming, including among primary school age children,
internationalization of these technologies should be a high priority.

Third, internationalization of the Internet requires social change in large social institu-
tions, and that change needs to be coupled with other interests to be successful. Many
of the core Internet technologies like the DNS, WHOIS, mail, etc., were designed very
poorly from the perspective of security considerations. The DNS, for example, is suscep-
tible to various kinds of attacks that direct users to incorrect hosts, and ICANN faces in-
creasing public pressure to update the DNS for security. Coupling internationalization
concerns with security is actually a necessity for both: many of the DNS security con-
cerns come from the combined, sometimes conflicting assumptions of Unicode and
ICANN when applied to IDNs.

Fourth, changes in the core technologies of the Internet will require significant institu-
tional support. EFNIL is one such institution, but many others need to be engaged as well,
from the many organizations overseeing different aspects of the Internet (ICANN, the IP
registries ARIN, RIPE, APNIC, the Internet Engineering Task Force, etc.), to the national
telecommunications regulators of member states, to technical consortia such as the Uni-
code Consortium and the W3C, to commercial entities manufacturing and marketing
computers and Internet software; the list is long. Engagement of these institutions can
happen in different times and places and by different means: via workshops sponsored
at technology conferences for the WWW, Unicode, Internet networking, etc., via inter-
national for a such as the Internet Governance Forum and via institutional membership
for EFNIL or member organizations in technology consortia. Corporations and other or-
ganizations tend to move in directions where there are clear rewards (e.g. access to mar-
kets), so there is an important role for regulation and market incentives as well.

Finally, the changes described here are likely to take some time to implement. The Inter-
net itself was created with significant institutional support, but that support was more
like a trickle over a long period of time than a sudden flood: packet-switching, the basis

74 John C. Paolillo

for all Internet communications, was first envisioned in the early 1960s; it took nearly
ten years to have an operating network, and another twenty to bring that same network
to academia. Internationalizing the Internet probably will not take as long; for the sake
of the future of the languages of Europe and the rest of the world, it also needs to be
more rapid. Significant groundwork has been laid, which can continue to be improved
as long there are people and institutions who persist in demanding its improvement, and
who apply their efforts strategically.

7. References

Androutsopoulos, J. (ed.) (2006): Sociolinguistics and computer-mediated communication.
Themed issue, Journal of Sociolinguistics 10.4, 419-438.

Bauer, F. (2002): Pioneering work on software during the 50s in Central Europe. In: Hashagen,
U./Keil-Slawik, R./Norberg, A.(eds.): History of computing: software issues. Berlin: Sprin-
ger Verlag, 11-24.

Becker, J.D. (1988): Unicode 88. Palo Alto, CA: Xerox Corporation. Reprinted 1998 by the
Unicode Consortium. Internet: http://unicode.org/history/unicode88.pdf.

Berners-Lee, T./Fielding, R./Frystyk, H. (1996): Hypertext Transfer Protocol — HTTP 1.0. Inter-
net: www.ietf.org/rfc/rfc1945.txt.

Costello, A. (2003): Punycode: A bootstring encoding of Unicode for Internationalized Do-
main Names in Applications (IDNA). RFC-3492. IETF Network Working Group. Internet:
http://tools.ietf.org/html/rfc3492.

Crystal, D. (1997): English as a global language. Cambridge: Cambridge University Press.

Daigle, L. (2004): WHOIS Protocol Specification. RFC-3912. IETF Network Working Group.
Internet: http://tools.ietf.org/html/rfc3912.

Danet, B./Herring, S.C. (2007): The multilingual Internet. Oxford: Oxford University Press.

Faltstrom, P./Hoffman, P./Costello, A. (2003): Internationalizing Domain Names in Applica-
tions (IDNA). RFC-3490. Internet: http://tools.ietf.org/html/rfc3912.

Ferguson, C.A. (1959): Diglossia. In: Word 15, 325-340. Reprinted in: Ferguson, C.A. (1996):
Sociolinguistic perspectives: Papers on language in society, 1959-1994. Ed. by Thom Hueb-
ner. Oxford: Oxford University Press, 25-39.

Friedman, B./Nissenbaum, H. (1996): Bias in computer systems. In: ACM Transactions on In-
formation Systems 14 (3), 330-347.

Gillam, R. (2002): Unicode demystified. New York: Addison-Wesley.

Graddol, D. (1999): The decline of the native speaker. In: Graddol, D./Meinhof, U. (eds.): Eng-
lish in a changing world. In: AILA Review 13, 57-68.

Hardie, A. (2007): From legacy encodings to Unicode: the graphical and logical principles in
the scripts of South Asia. In: Language Resources and Evaluation 41, 1-25.

Kahn, R. (2006): Remarks from the opening session of the first Internet Governance Forum.
Athens, Greece. Internet: www.intgovforum.org/cms/IGF-OpeningSession-301006.txt.

Klensin, J. (2001): Simple Mail Transfer Protocol. RFC-2821. Internet: www.ietf.org/rfc/rfc2821.txt.

Loewis, M. van. (1997): Internationalization and nationalization. Proceedings of the Sixth
International Python Conference, San Jose, CA, October 1997. Internet: www.python.org/
workshops/1997-10/proceedings/loewis.html.

Language, the Internet and access. do we recognize all the issues? 75

Mayer-Schonberger, V./Ziewitz, M. (2006): Jefferson rebuffed: The United States and the fu-
ture of Internet governance. (= Kennedy School of Government Faculty Research Working
Paper Series, RWP06-018). Cambridge, MA: Harvard Kennedy School of Government. In-
ternet: http://ksgnotesl.harvard.edu/Research/wpaper.nsf/rwp/RWP06-018.

McEnery, A.M./Xiao, R.Z. (2005): Character encoding in corpus construction. In: Wynne, M.
(ed.): Developing Linguistic Corpora: A Guide to Good Practice. Oxford: AHDS, 47-58.

Pargman, D./Palme, J. (2009): ASCII imperialism. In: Lampland, M./Star, S.L. (eds.): Stand-
ards and their stories: How quantifying, classifying, and formalizing practices shape every-
day life. Ithaca, NY : Cornell University Press, 177-199.

Phillipson, R. (1992): Linguistic imperialism. Oxford: Oxford University Press.
Phillipson, R. (2003): English-only Europe? Challenging language policy. Oxford: Routledge.
Rader, R.W. (2001): One history of DNS. Internet: www.byte.org/one-history-of-dns.pdf.

Tomayko, J.E. (2002): Software as engineering. In: Hashagen, U./Keil-Slawik, R./Norberg, A.
(eds.): History of computing: software issues. Berlin: Springer Verlag, 65-76.

Unicode (2011): The Unicode Standard, Version 6.0.0. Mountain View, CA: The Unicode Con-
sortium. Internet: www.unicode.org/versions/Unicode6.0.0/.

Wright, S. (ed.) (2004): Multilingualism on the Internet. Themed Issue, International Journal
on Multicultural Societies 6.1. Internet: www.unesco.org/shs/ijms.

8. Appendix: Keywords sets of several common markup and
programming languages

HTML A, ABBR, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT,
1) BDO, BIG, BLOCKQUOTE, BODY, BR, BUTTON, CAPTION, CENTER,
CITE, CODE, COL, COLGROUP, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
FIELDSET, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5, H6,
HEAD, HR, HTML, I, IFRAME, IMG, INPUT, INS, ISINDEX, KBD, LABEL,
LEGEND, LI, LINK, MAP, MENU, META, NOFRAMES, NOSCRIPT,
OBJECT, OL, OPTGROUP, OPTION, P, PARAM, PRE, Q, S, SAMP, SCRIPT,
SELECT, SMALL, SPAN, STRIKE, STRONG, STYLE, SUB, SUP, TABLE,
TBODY, TD, TEXTAREA, TFOOT, TH, THEAD, TITLE, TR, TT, U, UL, VAR

(120) abbr, accept-charset, accept, accesskey, action, align, alink, alt, archive, axis,
background, bgcolor, border, cellpadding, cellspacing, char, charoff, charset,
checked, cite, class, classid, clear, code, codebase, codetype, color, cols, colspan,
compact, content, coords, data, datetime, declare, defer, dir, disabled, enctype,
face, for, frame, frameborder, headers, height, href, hreflang, hspace, http-equiv,
id, ismap, label, lang, language, link, longdesc, marginheight, marginwidth,
maxlength, media, method, multiple, name, nohref, noresize, noshade, nowrap,
object, onblur, onchange, onclick, ondblclick, onfocus, onkeydown, onkeypress,
onkeyup, onload, onload, onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup, onreset, onselect, onsubmit, onunload, profile,
prompt, readonly, rel, rev, rows, rowspan, rules, scheme, scope, scrolling,
selected, shape, size, span, src, standby, start, style, summary, tabindex, target,
text, title, type, usemap, valign

76 John C. Paolillo

XML-DTD | ELEMENT, DOCTYPE, IGNORE, INCLUDE, SYSTEM, PUBLIC, #PCDATA,

(22) ANY, EMPTY, CDATA, NMTOKEN, NMTOKENS, ID, IDREFS, ENTITY,
ENTITIES, NOTATION, #REQUIRED, #IMPLIED, #FIXED, xml:space,
xml:lang

Python and, as, assert, break, class, continue, def, del, elif, else, except, exec, finally,

(31) for, from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try,
while, with, yield

Ruby alias, and, BEGIN, begin, break, case, class, def, defined, do, else, elsif, END,

(38) end, ensure, false, for, if, in, module, next, nil, not, or, redo, rescue, retry, return,
self, super, then, true, undef, unless, until, when, while, yield

PHP Abstract, and, array(), as, break, case, catch, cfunction, class, clone, const,

(71) continue, declare, default , do, else, elseif, enddeclare, endfor, endforeach,
endif, endswitch, endwhile, extends, final, for, foreach, function, global, goto,
if, implements, interface, instanceof, namespace, old_function, or, private,
protected, public, static, switch, throw, try, use, var, while, xor, CLASS |,
~ DIR , FILE , LINE , FUNCTION , METHOD |,
__ NAMESPACE __, Language, constructs, die(), echo(), empty(), exit(),
eval(), include(), include once(), isset(), list(), require(), require_once(),
return(), print(), unset()

Fortran assign, backspace, block data, call, close, common, continue, data, dimension,

(41) do, else, else if, end, endfile, endif, entry, equivalence, external, format, function,
goto, if, implicit, inquire, intrinsic, open, parameter, pause, print, program, read,
return, rewind, rewrite, save, stop, subroutine, then, write

C auto, break, case, char, const, continue, default, do, double, else, enum, extern,

(31) float, for, goto, if, int, long, register, return, short, signed, static, struct, switch,
typedef, union, unsigned, void, volatile, while

C++ bool, catch, class, delete, friend, inline, new, namespace, operator, private,

(16) protected, public, tempate, this, throw, try, template

