Automatically Generated Online Dictionaries

Tamás Váradi and Enikő Héja

Research Institute for Linguistics Hungarian Academy of Sciences varadi, eheja@nytud.hu

Background I

- Goals:
- Dictionaries for human use covering every day vocabulary for medium density languages
- 20.000-45.000 entries (depending on the size of available resources)
- Realization:
- According to the state-of-the-art there are no LT-methods that could fully eliminate lexicographic expertize during dictionary building
- Objective: to provide lexicographers with automatically generated resources facilitating their work $=>$ Proto-dictionaries
- Manual post-editing is needed!

Background II

- Methodology:
- Statistical word alignment
- Based on sentence aligned parallel corpora
- Language pairs:
- (Hungarian - Slovenian)
- Hungarian - Lithuanian
- French - Dutch

Proto-dictionary: an Example

HUN LEMMA LIT LEMMA TRANSLATIONAL PROBABILITY FREQUENCY OF HUN LEMMA FREQUENCY OF LIT LEMMA Születik Gimti $(-$-sta,-è $)$ 0.579005 169 174 HUN Ő 1870-ben született He was born in 1870 De Fache mintha erre született volna Bet Fasas, regis, tiesiog tam gimęs As if Fache was born to do this

Performed by

language-independent tools

Performed by language-specific tools

Hunalign sentence aligner
(language independent)
2. Evaluation
3. Evaluation

GIZA++ wordaligner (language independent)

4. Evaluation

Creating dictionary by using
word alignment and
example sentences from
corpora

Raw corpus" for Ll

- Encoding issues
- Line breaks
- Normalization

Annotated corpus-L1

- Tokenization

Sentence segmentation

- Lemmatization

"Raw corpus" for L2
- Encoding issues
- Line breaks
- Normalization
corpus-L2
- Tokenization
- Sentence segmentation
- Lemmatization

Parallel corpus Sentence alignment

Dictionary for
L1, L2

Advantages

- provides consistent and reliable method
- selecting source language headwords
- finding the translational equivalents
- Usage-based, representative translations
- Clear ranking between more likely and less likely translations
- Most-used translation equivalents are ranked higher
- Example sentences facilitate the creation of encoding dictionaries
- Reversing the dictionary is a more straightforward process

Recent Activities

- Size of proto-dictionaries has been increased
- Bigger parallel corpus
- Evaluation on the basis of refined parameters
- Proto-dictionary for French and Dutch
- Online dictionary query system to disseminate our results
- A proof-of-concept experiment to confirm that MWEs (verbal structures) can be treated in a similar way
- Results were presented at the $5^{\text {th }}$ Terminology Summit

Enlargement of HUN-LIT proto-dictionary

 Augmenting the size of the parallel corpus| Parallel Corpus | Tokens | Translation Units |
| :--- | :--- | :--- |
| Lithuanian ORIG | $1,765,000$ | 147,158 |
| Lithuanian NEW | $\mathbf{3 , 5 4 4 , 0 0 0}$ | $\mathbf{2 6 2 , 4 2 3}$ |
| Hungarian ORIG | $2,121,000$ | 147,158 |
| Hungarian NEW | $\mathbf{4 , 1 8 9 , 0 0 0}$ | $\mathbf{2 6 2 , 4 2 3}$ |

Enlargement of HUN-LIT proto-dictionary

Refining the parameters

HUN	LIT	EN	Translation Probability $\mathrm{P}($ tr $)$	Freq HUN	Freq LIT
gondosan	rūpestingai	'carefully'	$\mathbf{0 . 2 2 1 2 3}$	218	118

- $P(t r)$, source and target lemma frequencies served as parameters to automatic selection of the best candidates
- Goal:
- to select the best translation candidates
- to keep as many translation candidates as possible
- A trade-off between the two objectives has to be found

Enlargement of HUN-LIT proto-dictionary

 Refining the parameters| Lemma frequency
 (LF) | Translational
 probability
 $\mathrm{P}(\operatorname{tr})$ | Number of
 translation
 candidates | Number of
 evaluated
 translation
 candidates |
| :--- | :--- | :--- | :--- |
| $5 \leq \mathrm{LF}<30$ | $\mathrm{P}(\operatorname{tr}) \geq 0.3$ | 6713 | 200 |
| $30 \leq \mathrm{LF}<90$ | $\mathrm{P}(\operatorname{tr}) \geq 0.1$ | 5181 | 200 |
| $90 \leq \mathrm{LF}<300$ | $\mathrm{P}(\operatorname{tr}) \geq 0.07$ | 3401 | 200 |
| $300 \leq \mathrm{LF}$ | $\mathrm{P}(\operatorname{tr}) \geq 0.04$ | 2725 | 200 |

5,521 translation candidates with the original parameters

18020	800

Enlargement of HUN-LIT proto-dictionary

Refining the parameters - Evaluation results

Evaluation range	OK	Useful	$\begin{aligned} & \text { OK + } \\ & \text { Useful } \end{aligned}$	Too special vocabulary	Incorrect	Useless	Number of useful candidates
$\begin{aligned} & 5 \leq \mathrm{LF}<30 \\ & \mathrm{P}(\operatorname{tr}) \geq 0.3 \end{aligned}$	40\%	24%	64\%	7\%	29\%	36\%	4,296
$\begin{aligned} & 30 \leq \mathrm{LF}<90 \\ & \mathrm{P}(\mathrm{tr}) \geq 0.1 \end{aligned}$	59\%	21\%	80\%	8,5\%	11,5\%	20\%	4,144
$\begin{aligned} & 90 \leq \mathrm{LF}<300 \\ & \mathrm{P}(\operatorname{tr}) \geq 0.07 \end{aligned}$	75\%	14\%	89\%	9\%	2\%	11\%	3,026
$\begin{aligned} & 300 \leq \mathrm{LF} \\ & \mathrm{P}(\operatorname{tr}) \geq 0.04 \end{aligned}$	$\begin{aligned} & 43.5 \\ & \% \end{aligned}$	35\%	78.5\%	9.5\%	12\%	21.5\%	2,139

Creating the French-Dutch Dictionary

Description of the source parallel corpus

- French-Dutch subcorpus of the Dutch Parallel Corpus (DPC)
- TLT-Centrale (Macken et al., 2007)
- FRENCH: 3,606,000 tokens; DUTCH: 3,215,000 tokens
- BOTH: 186,945 translational units
- Morphological annotation
- Various text types
- literature, journalistic texts, instructive texts, administrative texts, external communication

Creating the French-Dutch Dictionary

Results - with the original parameter setting

- Workflow was the same as in the case of the HUN-LIT language pair
- Results were comparable to that of the HUN-LIT protodictionary in terms of precision and recall (7007 translation candidates with the original parameter setting)
- Refinement of the parameters increased considerably the number of the likely translation candidates

Online Versions: Dictionary Browser

- (3) Word cloud:
- font size mirrors P(tr)
- colour reflects semantic relation
between source and target headwords
- (1) Translation candidates are ranked based on their likelihood $=>$ most used translation candidates come first
- (2) Plot displays the distribution of translations based on $\mathrm{P}($ tr) and ferquency ratio between the source word and the corresponding translation
- (4) Relevant contexts can be easily listed by clicking on the translation candidate

Link

http://efnilex.nytud.hu/efnilex/

Future plans

- Multi-word expressions
- Our proof-of-concept experiment on verbal structures should be extended to handle collocations, too
- Adding monolingual frequency lists to compensate for accidental gaps in coverage and to provide a balanced list of lemmas.
- Predicting semantic relations (hyponymy, hyperonymy, translational equivalence) between source and target lemmata in the dictionaries

References

- Váradi T., Héja E.: Multilingual Terminology Extraction from Parallel Corpora - A Methodology for the Automatic Extraction of Verbal Structures and their Translation Equivalents. In: Journal of Hungarian Terminology (to appear)
- Héja E.: Dictionary Building based on Parallel Corpora and Word Alignment. In: Dykstra, A. and Schoonheim, T., (eds): Proceedings of the XIV. EURALEX International Congress, 2010, pp. 341-352.
- Héja E.:The Role of Parallel Corpora in Bilingual Lexicography. In: Proceedings of the LREC2010 Conference, La Valletta, Malta, May 2010, pp. 2798-2805.

Thank you for your attention!

http://efnilex.nytud.hu/efnilex/

Outline

- Background
- Recent activities
- Increasing the size of the Hungarian-Lithuanian dictionary
- Augmenting the size of the parallel corpus
- Fine-tuning the parameters
- Creating the French-Dutch dictionary
- Online dictionary query system
- Future plans

Advantages II

- Encoding dictionary: designed to help people to make utterances in a foreign language $\boldsymbol{\nabla}$ relevant contexts giving hints on the proper use of an expression are particularly important
- Reversing the dictionary is a more straightforward process

Online Versions: Customization

- Customizable in terms of precision and coverage to suit different user needs
- Novice language learner: reliable translations for basic vocabulary (high precision, low coverage)
- Professionals: special uses of words, able to select the proper equivalents (low precision, great coverage

